A Demand Forecasting Methodology for Fuzzy Environments

نویسندگان

  • Özgür Kabak
  • Füsun Ülengin
چکیده

Several supply chain and production planning models in the literature assume the demands are fuzzy but most of them do not offer a specific technique to derive the fuzzy demands. In this study, we propose a methodology to obtain a fuzzy-demand forecast that is represented by a possibilistic distribution. The fuzzy-demand forecast is found by aggregating forecasts based on different sources; namely statistical forecasting methods and experts’ judgments. In the methodology, initially, the forecast derived from the statistical forecasting techniques and experts’ judgments are represented by triangular possibilistic distributions. Subsequently, those results are combined by using weights assigned to each of them. A new objective weighting approach is used to find the weights. The proposed methodology is illustrated by an example and a sensitivity analysis is provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Daily irrigation water demand prediction using Adaptive Neuro- Fuzzy Inferences Systems (ANFIS)

One of the main problems in the management of large water supply and distribution systems is the forecasting of daily demand in order to schedule pumping effort and minimize costs. This paper examines a methodology for consumer demand modeling and prediction in a real-time environment of an irrigation water distribution system. The approach is based on Adaptive Neuro-Fuzzy Inferences System (AN...

متن کامل

Forecasting the Long-Term Electricity Demand in Taiwan with a Hybrid FLR and BPN Approach

Precisely and accurately predict the electricity demand is an important task for the government in each country. In addition, establishing the lowest upper bound for the electricity demand also avoids unnecessary power plant investment. To this end, a hybrid fuzzy linear regression (FLR) and back propagation network (BPN) approach is proposed in this study. In the proposed methodology, multiple...

متن کامل

A type-2 fuzzy system model for reducing bullwhip effects in supply chains and its application in steel manufacturing

Supply chain management; Fuzzy clustering; Interval type-2 fuzzy hybrid system; Demand forecasting; Ordering policy; Bullwhip effect. Abstract The purpose of this paper is to evaluate and reduce the bullwhip effect in fuzzy environments by means of type-2 fuzzymethodology. In order to reduce the bullwhip effect in a supply chain, we propose a newmethod for demand forecasting. First, the demand ...

متن کامل

Using a Fuzzy Auto Regressive Integrated Moving Average Model for Exchange Rate Forecasting

Forecasting models have wide applications in decision making. In the real world, rapid changes normally take place in different areas, specifically in financial markets. Collecting the required data is a main problem for forecasters in such unstable environments. Forecasting methods such as Auto Regressive Integrated Moving Average (ARIMA) models and also Artificial Neural Networks (ANNs) need ...

متن کامل

A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: A comparative analysis

An organization has to make the right decisions in time depending on demand information to enhance the commercial competitive advantage in a constantly fluctuating business environment. Therefore, estimating the demand quantity for the next period most likely appears to be crucial. This work presents a comparative forecasting methodology regarding to uncertain customer demands in a multi-level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2010